3.3.22 \(\int \frac {\log (c (a+b x)^p)}{d+e x} \, dx\) [222]

Optimal. Leaf size=58 \[ \frac {\log \left (c (a+b x)^p\right ) \log \left (\frac {b (d+e x)}{b d-a e}\right )}{e}+\frac {p \text {Li}_2\left (-\frac {e (a+b x)}{b d-a e}\right )}{e} \]

[Out]

ln(c*(b*x+a)^p)*ln(b*(e*x+d)/(-a*e+b*d))/e+p*polylog(2,-e*(b*x+a)/(-a*e+b*d))/e

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 58, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2441, 2440, 2438} \begin {gather*} \frac {p \text {PolyLog}\left (2,-\frac {e (a+b x)}{b d-a e}\right )}{e}+\frac {\log \left (c (a+b x)^p\right ) \log \left (\frac {b (d+e x)}{b d-a e}\right )}{e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Log[c*(a + b*x)^p]/(d + e*x),x]

[Out]

(Log[c*(a + b*x)^p]*Log[(b*(d + e*x))/(b*d - a*e)])/e + (p*PolyLog[2, -((e*(a + b*x))/(b*d - a*e))])/e

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2440

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Dist[1/g, Subst[Int[(a +
 b*Log[1 + c*e*(x/g)])/x, x], x, f + g*x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[g
 + c*(e*f - d*g), 0]

Rule 2441

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[Log[e*((f + g
*x)/(e*f - d*g))]*((a + b*Log[c*(d + e*x)^n])/g), x] - Dist[b*e*(n/g), Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rubi steps

\begin {align*} \int \frac {\log \left (c (a+b x)^p\right )}{d+e x} \, dx &=\frac {\log \left (c (a+b x)^p\right ) \log \left (\frac {b (d+e x)}{b d-a e}\right )}{e}-\frac {(b p) \int \frac {\log \left (\frac {b (d+e x)}{b d-a e}\right )}{a+b x} \, dx}{e}\\ &=\frac {\log \left (c (a+b x)^p\right ) \log \left (\frac {b (d+e x)}{b d-a e}\right )}{e}-\frac {p \text {Subst}\left (\int \frac {\log \left (1+\frac {e x}{b d-a e}\right )}{x} \, dx,x,a+b x\right )}{e}\\ &=\frac {\log \left (c (a+b x)^p\right ) \log \left (\frac {b (d+e x)}{b d-a e}\right )}{e}+\frac {p \text {Li}_2\left (-\frac {e (a+b x)}{b d-a e}\right )}{e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.00, size = 57, normalized size = 0.98 \begin {gather*} \frac {\log \left (c (a+b x)^p\right ) \log \left (\frac {b (d+e x)}{b d-a e}\right )}{e}+\frac {p \text {Li}_2\left (\frac {e (a+b x)}{-b d+a e}\right )}{e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Log[c*(a + b*x)^p]/(d + e*x),x]

[Out]

(Log[c*(a + b*x)^p]*Log[(b*(d + e*x))/(b*d - a*e)])/e + (p*PolyLog[2, (e*(a + b*x))/(-(b*d) + a*e)])/e

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.41, size = 242, normalized size = 4.17

method result size
risch \(\frac {\ln \left (e x +d \right ) \ln \left (\left (b x +a \right )^{p}\right )}{e}-\frac {p \dilog \left (\frac {\left (e x +d \right ) b +a e -b d}{a e -b d}\right )}{e}-\frac {p \ln \left (e x +d \right ) \ln \left (\frac {\left (e x +d \right ) b +a e -b d}{a e -b d}\right )}{e}+\frac {i \ln \left (e x +d \right ) \pi \,\mathrm {csgn}\left (i \left (b x +a \right )^{p}\right ) \mathrm {csgn}\left (i c \left (b x +a \right )^{p}\right )^{2}}{2 e}-\frac {i \ln \left (e x +d \right ) \pi \,\mathrm {csgn}\left (i \left (b x +a \right )^{p}\right ) \mathrm {csgn}\left (i c \left (b x +a \right )^{p}\right ) \mathrm {csgn}\left (i c \right )}{2 e}-\frac {i \ln \left (e x +d \right ) \pi \mathrm {csgn}\left (i c \left (b x +a \right )^{p}\right )^{3}}{2 e}+\frac {i \ln \left (e x +d \right ) \pi \mathrm {csgn}\left (i c \left (b x +a \right )^{p}\right )^{2} \mathrm {csgn}\left (i c \right )}{2 e}+\frac {\ln \left (e x +d \right ) \ln \left (c \right )}{e}\) \(242\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(c*(b*x+a)^p)/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

ln(e*x+d)/e*ln((b*x+a)^p)-1/e*p*dilog(((e*x+d)*b+a*e-b*d)/(a*e-b*d))-1/e*p*ln(e*x+d)*ln(((e*x+d)*b+a*e-b*d)/(a
*e-b*d))+1/2*I*ln(e*x+d)/e*Pi*csgn(I*(b*x+a)^p)*csgn(I*c*(b*x+a)^p)^2-1/2*I*ln(e*x+d)/e*Pi*csgn(I*(b*x+a)^p)*c
sgn(I*c*(b*x+a)^p)*csgn(I*c)-1/2*I*ln(e*x+d)/e*Pi*csgn(I*c*(b*x+a)^p)^3+1/2*I*ln(e*x+d)/e*Pi*csgn(I*c*(b*x+a)^
p)^2*csgn(I*c)+ln(e*x+d)/e*ln(c)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 123 vs. \(2 (59) = 118\).
time = 0.28, size = 123, normalized size = 2.12 \begin {gather*} b p {\left (\frac {\log \left (b x + a\right ) \log \left (x e + d\right )}{b} - \frac {\log \left (x e + d\right ) \log \left (-\frac {b x e + b d}{b d - a e} + 1\right ) + {\rm Li}_2\left (\frac {b x e + b d}{b d - a e}\right )}{b}\right )} e^{\left (-1\right )} - p e^{\left (-1\right )} \log \left (b x + a\right ) \log \left (x e + d\right ) + e^{\left (-1\right )} \log \left ({\left (b x + a\right )}^{p} c\right ) \log \left (x e + d\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x+a)^p)/(e*x+d),x, algorithm="maxima")

[Out]

b*p*(log(b*x + a)*log(x*e + d)/b - (log(x*e + d)*log(-(b*x*e + b*d)/(b*d - a*e) + 1) + dilog((b*x*e + b*d)/(b*
d - a*e)))/b)*e^(-1) - p*e^(-1)*log(b*x + a)*log(x*e + d) + e^(-1)*log((b*x + a)^p*c)*log(x*e + d)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x+a)^p)/(e*x+d),x, algorithm="fricas")

[Out]

integral(log((b*x + a)^p*c)/(x*e + d), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\log {\left (c \left (a + b x\right )^{p} \right )}}{d + e x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(c*(b*x+a)**p)/(e*x+d),x)

[Out]

Integral(log(c*(a + b*x)**p)/(d + e*x), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(c*(b*x+a)^p)/(e*x+d),x, algorithm="giac")

[Out]

integrate(log((b*x + a)^p*c)/(x*e + d), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {\ln \left (c\,{\left (a+b\,x\right )}^p\right )}{d+e\,x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(log(c*(a + b*x)^p)/(d + e*x),x)

[Out]

int(log(c*(a + b*x)^p)/(d + e*x), x)

________________________________________________________________________________________